无人驾驶产业链之域控制器行业深度报告承启

郑华国 https://jbk.39.net/yiyuanzaixian/bjzkbdfyy/nxbdf/

如需报告请登录。

域控制器的背景

无人驾驶催生产业链新机遇

无人驾驶进程中的车辆架构发生较大改变——从EE(电子电气)到“计算+通信”。实现汽车软件定义、持续创造价值。传统电子电气架构中,车辆主要由硬件定义,采用分布式的控制单元,专用传感器、专用ECU及算法,资源协同性不高,有一定程度的浪费;计算+通信架构中,旨在实现软件定义车,域控制器在这里发挥重要作用,通过域控制器的整合,分散的车辆硬件之间可以实现信息互联互通和资源共享,软件可升级,硬件和传感器可以更换和进行功能扩展。

无人驾驶进程中车辆电子电气架构从分布到集中

汽车电子电气架构奠定车辆底层框架。汽车电子电气架构(ElectronicandElectricalArchitecture,文中简称EEA)是由车企所定义的一套整合方式,是一个偏宏观的概念,类似于人体结构和建筑工程图纸,也就是搭了一副骨架,需要各种“器官”、“血液”和“神经”来填充,使其具有生命力。具体到汽车上来说,EEA把汽车中的各类传感器、ECU(电子控制单元)、线束拓扑和电子电气分配系统完美地整合在一起,完成运算、动力和能量的分配,实现整车的各项智能化功能。

无人驾驶进程中的车辆架构从分布向集中发展。全球零部件龙头企业博世曾经将汽车电子电气架构划分为三个大阶段:分布式电子电气架构-域集中电子电气架构-车辆集中电子电气架构,三个大阶段之中又分别包含两大发展节点,一共六个发展节点,细化了电子电气架构将从分布式向车辆集中式演变的过程。伴随汽车自动化程度从L0-L5逐级提升,目前大部分的传统车企电子电气架构处在从分布式向域集中过渡的阶段。分布式的电子电气架构主要用在L0-L2级别车型,此时车辆主要由硬件定义,采用分布式的控制单元,专用传感器、专用ECU及算法,资源协同性不高,有一定程度的浪费;从L3级别开始,域集中电子电气架构走向舞台,域控制器在这里发挥重要作用,通过域控制器的整合,分散的车辆硬件之间可以实现信息互联互通和资源共享,软件可升级,硬件和传感器可以更换和进行功能扩展;再往后发展,以特斯拉Model3领衔开发的集中式电子电气架构基本达到了车辆终极理想——也就是车载电脑级别的中央控制架构。

车辆自动驾驶级别主要参照0-5级分类。目前全球公认的汽车自动驾驶技术分级标准主要有两个,分别是由美国高速公路安全管理局(NHTSA)和国际自动机工程师学会(SAE)提出。中国于年参考SAE的0-5级的分级框架发布了中国版《汽车驾驶自动化分级》,并结合中国当前实际情况进行了部分调整,大体上也将自动驾驶分为0-5级。

L3级别是汽车自动化道路的一次跃升。从法规和技术两个维度来看,L3级别自动驾驶都是汽车自动化道路上的一大跃升。从法规来看,SAE和中国《汽车自动化分级》规定L0-L2级别均是人类主导驾驶,车辆只做辅助,L0、L1和L2之间的差异主要在于搭载的ADAS功能的多少,而L3开始,人类在驾驶操作中的作用快速下降,车辆自动驾驶系统在条件许可下可以完成所有驾驶操作(作用不亚于驾驶员),驾驶员在系统失效或者超过设计运行条件时对故障汽车进行接管;从技术来看,L0-L2主要运用的传感器有摄像头、超声波雷达和毫米波雷达,L3及之后原有传感器配套数量上升,同时高成本的激光雷达方案难以避开,传感器之间的协同要求提升,多传感器融合算法愈发复杂,所需控制器芯片算力大幅提升。

年是L3级别车型量产年。奥迪A8是最早实现搭载了L3级别硬件的量产车型,虽然由于法律监管的约束A8始终无法向消费者实现L3级别功能落地,但其年推出的5摄像头+12超声波雷达+4毫米波雷达+1激光雷达的量产硬件方案,始终是行业的先驱者之一。奥迪之后,全球多数车企纷纷计划在-年开始正式量产L3级别车型,如宝马iNEXT、奔驰全新S/C级等车型。

中国的L3量产自年长安发布的UNI-T车型始,年是我国L3级别车型的量产年,将先后迎来小鹏P7、长安UNI-T、北汽新能源ARCFOXECFConcept、广汽新能源AionLX、奇点iS6等L3级别车型的上市。

域控制器自L3始进入市场。由于L3级别“人车共驾”带来的传感器数量和融合算法的增加,现有广泛使用的传统分布式电子电气架构面临ECU数量增加冗余成本提升、传感器数据耦合困难、布线复杂度提升、线束成本提升等问题,难以支撑车辆L3功能的实现,域集中的电子电气架构自L3起进入舞台。该架构下的核心处理模块——域控制器开始进入市场。接下来的篇幅我们将围绕域控制器的定义、作用、原理、分类、结构以及产业链进行展开。

域控制器的前世今生

前世:汽车ECU的出现及瓶颈

ECU(ElectronicControlUnit)电子控制器单元,又称为汽车的“行车电脑”,它们的用途就是控制汽车的行驶状态以及实现其各种功能。主要是利用各种传感器、总线的数据采集与交换,来判断车辆状态以及司机的意图并通过执行器来操控汽车。

ECU核心在于微处理器。ECU是汽车专用微机控制器,和普通的单片机一样,由微处理器、存储器、输入/输出接口、模数转换器以及整形、驱动等集成电路组成。汽车ECU的核心在于微处理器,微处理器包括MCU、MPU、DSP和逻辑IC等。ECU领先企业包括博世、电装、大陆、Aptiv、伟世通等。

ECU使用范围越来越广泛。年,奥迪A8上使用了5个ECU,最开始ECU仅仅用于控制发动机工作,随着今天汽车技术的进步,ECU肩负起了越来越多的重担,例如防抱死制动系统、4轮驱动系统、主动悬架系统、安全气囊系统、自动变速箱都需要单独的控制系统,越来越多的ECU出现在汽车上,汽车添加的诸多设备都需要ECU的管理,如今ECU已经成为汽车上最为常见的部件之一,依据功能的不同可以分为不同的类型。最常见的包括EMS/TCU/BCM/ESP/VCU等。

ECU数量迅速增加。随着车辆的电子化程度逐渐提高,ECU占领了整个汽车,从传统的引擎控制系统、安全气囊、防抱死系统、电动助力转向、车身电子稳定系统、车灯控制、空调、水泵油泵、仪表、娱乐影音系统。到现在已经广泛使用的胎压监测系统、无钥匙进入启动系统、电动座椅加热调节,还有不断成熟、方兴未艾,正在普及推广的辅助驾驶系统、矩阵大灯、氛围灯。还有电动汽车上的电驱控制、电池管理系统、车载充电系统,以及蓬勃发展的车载网关、T-BOX和自动驾驶系统等等。这些应用带动了电子控制单元ECU数量的大幅增加,高端车型里的ECU平均达到50-70个,电子结构较为复杂的车型ECU数量或超过个。

ECU增加面临成本和技术瓶颈,域控制器应运而生。自动驾驶要求更高的算力和更多传感器件,ECU的增长终将迎来爆发,而传统的汽车电子电气架构都是分布式的,汽车里的各个ECU都是通过CAN和LIN总线连接在一起。这种分布式的ECU架构如果无限制扩张,将在成本端和技术端都面临巨大挑战。

成本端——

1)算力冗余浪费。ECU的算力不能协同,并相互冗余,产生极大浪费;

2)线束成本提升。这种分布式的架构需要大量的内部通信,客观上导致线束成本大幅增加,同时装配难度也加大。

技术端——

3)多传感器融合算法需要域控制器的统一处理。ADAS系统里有各种传感器如摄像头、毫米波雷达和激光雷达,产生的数据量很大,各种不同的功能都需要这些数据,每个传感器模块可以对数据进行预处理,通过车载以太网传输数据,为了保证数据处理的结果最优化,最好功能控制都集中在一个核心处理器里处理,这就产生了对域控制器的需求;

4)分布式ECU无法统一维护升级。大量分离的嵌入式OS和应用程序Firmware,由不同Tier1提供,语言和编程风格迥异,导致没法统一维护和OTA升级;

5)分布式ECU制约软件生态应用。第三方应用开发者无法与这些硬件进行便捷的编程,成为制约软件定义的瓶颈。

6)保障汽车安全的需求。随着汽车ECU的增多,被外部攻击的可能性也就增多了,现在的汽车与外部的数据交换越来越多,车联网的发展也给黑客提供了攻击的可能性,如果还是分布式架构,就不能很方便地把一些关键系统保护起来,比如引擎控制和制动系统这些属于动力和传动控制方面的。可以单独把这些动力、传动控制系统组成一个域,通过中央网关与其他域隔离开,使其受到攻击的可能性减小,同时加强这个域的网络安全防护,这也产生了对域控制器的需求。

7)平台化、标准化的需求。集中式的架构相比分布式的架构,需要DCU的处理单元拥有更强的多核、更大的计算能力,而域里其它的处理器相对就可以减少性能和资源。各种传感器、执行器可以成为单独的模块,这样可以更方便实现零部件的标准化。DCU能够接入不同传感器的信号并对信号进行分析和处理,这样就可以方便地扩展外接的传感器,这样就能够更加适应不同需求的开发,从而为平台化铺平道路。

总结来说,随着车载传感器数量越来越多,传感器与ECU一一对应使得车辆整体性能下降,线路复杂性也急剧增加,同时分布式ECU架构在自动驾驶功能实现上面临诸多技术瓶颈,此时DCU(域控制器)和MDC(多域控制器)应运而生,以更强大的中心化架构逐步替代了分布式架构。

今生:DCU(域控制器)走上舞台

域控制器将车身划分为多个功能模块。所谓“域”就是将汽车电子系统根据功能划分为若干个功能块,每个功能块内部的系统架构由域控制器为主导搭建。各个域内部的系统互联仍可使用现如今十分常用的CAN和FlexRay通信总线。而不同域之间的通讯,则需要由更高传输性能的以太网作为主干网络承担信息交换任务。对于功能域的具体划分,不同整车厂会有自己的设计理念,图1给出了一种可能的划分方法。在每个功能域中,域控制器处于绝对中心,它们需要强大的处理功率和超高的实时性能以及大量的通信外设。

域控制器网络拓扑架构更为集中。域控制器(DCU,DomainControlUnit)的概念最早是由以博世,大陆,德尔福为首的Tier1提出,为了解决信息安全,以及ECU瓶颈的问题。根据汽车电子部件功能将整车划分为车身与便利系统(BodyConvenience)、车用资讯娱乐系统(Infotainment)、底盘与安全系统(chassisandsafety)、动力系统(powertrain),以及高级辅助驾驶系统(ADAS)等五个大域,大域下面包含各种子域。每个域或子域都有对应的域控制器DCU和各种ECU,所有这些构成了汽车电子电气架构的网络拓扑。利用处理能力更强的多核CPU/GPU芯片相对集中的控制每个域,以取代目前分布式电子电气架构。

域控制器降低原分布式ECU功能复杂度。域控制器因为有强大的硬件计算能力与丰富的软件接口支持,使得更多核心功能模块集中于域控制器内,系统功能集成度大大提高,这样对于功能的感知与执行的硬件要求降低。但是,域控制器的出现并不代表底层硬件ECU的大规模消失,很多ECU的功能会被弱化(软件和处理功能降级,执行层面功能保留),大部分传感器也可以直接传输数据给域控制器,或把数据初步处理后给域控制器,很多复杂计算都可以在域控制器里完成,甚至大部分控制功能也在域控制器里完成,原有ECU很多只需执行域控制器的命令,也就是说,外围零件只

转载请注明地址:http://www.1xbbk.net/jwbzn/8356.html


  • 上一篇文章:
  • 下一篇文章:
  • 网站简介 广告合作 发布优势 服务条款 隐私保护 网站地图 版权声明
    冀ICP备19027023号-7