治疗白癜风费用高吗 http://pf.39.net/bdfyy/bjzkbdfyy/150531/4632345.html
网络世界是攻击者的下一个主战场。目前,攻击者正忙于寻找破坏关键基础设施的方法。
据IAR系统嵌入式安全解决方案的负责人HaydnPovey透露:“有26%的美国电网都被发现装有特洛伊木马,而网络战中,电网往往是最先受到攻击的部分。”
但是,并非所有攻击都基于软件,有些是物理攻击,特别是物联网(IoT)的出现,涌现了一批进入敏感网络的新方法。“物联网市场本身不涉及篡改,但是由于很多新出现的IoT设备,尤其是对于工业IoT设备而言,物理攻击呈上升趋势。为了解决这个问题,防篡改功能出现在各种各样的芯片上。”芯科实验室(SiliconLabs)的IoT安全高级产品经理MikeDow说。
攻击者的目的,窃取机密或破坏系统
被连接设备的安全性涉及到用于加密消息并确保通讯中的各方身份的真实性的加密功能。此类功能需要加密的密钥、证书和其他伪迹,以确保机密的有效性。其中一些攻击者越来越多地转向物理攻击,试图检索这些机密并破坏其安全性。防篡改就是为了保护这些机密。
但是有些时候,攻击者的目标不是窃取机密,而是禁用或破坏系统。TortugaLogic的高级硬件安全工程师AlricAlthoff举了一个例子,“根据FIPS(联邦信息处理标准),随机数生成器(RNG)需要一个内置的健康测试,我们可以使用(电磁场)翻转尽可能多的位,RNG健康测试便会失败,数次失败之后,设备将自行禁用。”
由于失去了熵,已禁用的设备不再被允许执行加密功能,它所支持的系统便不再正常运行。Althoff表示:“这将促使RNG致力于增强安全性,并使其成为攻击载体。”
物理攻击要求攻击者拥有对被攻击单位实质上的占有。如果攻击成功,则攻击者将获得对该单元的访问权限。因此,每个单元都有其自己的唯一密钥非常重要,因为破解一个设备不会透露其他设备的秘密。
但是,访问一台设备并非一没有意义,通常受攻击的设备并不含有有价值的东西,该部分只是攻击者进入网络以访问其他地方更有价值的资产的一种方式。
篡改通常有一个目标,即以任何可能的方式提取加密密钥。最显而易见的方法是打开芯片搜寻存储密钥的依据。这可能来自存储器中的视觉线索,通过检测电路关键点处的电压或通过物理方式更改有源电路(即使只是暂时的)也可以。
一种常见的工具是聚焦离子束工具或FIB。与旧的一层一层剥离整个芯片的方法相比,它可以进行更精确的感测和钻井。通过谨慎地在未封装的芯片上进行操作,保持电源接通以便探测关键金属线。根据所使用的存储器类型,攻击者可能会尝试通过视觉上或电子方式检查存储值。
最近特别注意激光的使用。通过将激光聚焦在扩散区域上,光电效应可以使关联的节点改变状态。如果是节点是组合的,则之后可能会有一个短暂的“小故障”,但只要正确计时,即可在之后的触发器中被捕获。此类事件称为“单事件瞬态(SET)”。
也有可能直接攻击触发器,从而导致触发器处于翻转状态。这被称为“单事件失败(SEU)”。一旦能更改节点或触发器的值,就可以进一步探查电路的其余部分,以查看其响应方式。
某些非侵入式攻击者不会直接进入电路。相反,他们依赖于电路运行时泄漏的信息。这些“旁道攻击”涉及对电源线或电磁辐射的分析,以得到有关内部发生情况的线索。听起来似乎不太可能做到,但通过在涉及密钥的计算发生时观察这些伪迹以导出密钥却是可能的。
最后一类的篡改方式取决于找到一些异常行为,可以利用这些异常行为来泄露机密。这样的方式被称为“故障注入”或“故障感应”攻击,奇数电压或逻辑故障意外地导致了机密的丢失。西门子业务部Mentor安全设计主任MichaelChen说,这类方式不仅使用了随机的“模糊测试”,还使用了“特定的模式、’故障、快速/慢速、过压和欠压以及速度”。芯片设计人员很难预料到这种攻击。“这些漏洞更难解决,因为它们要么是故意设计的或计划之外的问题,要么是从未见过的真正的攻击。”他补充到。
强大的RF信号也可能导致意外行为。根据芯片工具用户手册,不断变化的磁场会在被测设备中产生感应电流,从而导致内部信号上的电压电平发生变化。这些变化的电压电平可能导致错误的读取(或写入),从而影响锁存器,寄存器等的结果。损坏内存,重置锁定位,跳过指令以及将故障插入加密操作都属于是电磁故障注入(EMFI)。
旁道攻击类型很多。Chen说:“并非所有的旁道都是功率/电磁的,它们可能是定时或总线监控,寄存器,缓存或存储器攻击。肯定还有数百万种我们尚未想到的方式。”
外壳保护与芯片保护
应对这些攻击对于物联网(IoT)设备来说是陌生的领域,但对于销售终端(PoS)系统中的芯片而言,却有很好的基础。这些单元用于支付卡行业(PCI),具有安全元件(SE),这些安全元件已通过法规和大部分金融机构的期望被严格锁定。
这些规则要求外壳是防篡改的,任何包含信用卡数据的内部芯片也都应具有防篡改功能,并且也必须屏蔽将信用卡阅读器连接到PoS系统的所有电缆。这些技术现在正在逐渐应用到更多普通芯片上,并且它们也正处于系统级应用。芯科实验室(SiliconLabs)的陶氏化学公司说:“如果无法发现未发现的情况,那么很难解决其他问题。”
在系统案例方面,电表和水表等计量公司多年来一直在实施防篡改措施,以防人们通过人为回退电表来减少实际费用。“计量行业已经习惯防篡改。医学界也开始对此进行研究,”陶氏说。在那些行业之外(包括PCI),找到工程级别的保护并不常见。可以通过将几个开关安装在适当的位置来增加这些功能,打开工程会改变开关的状态。,以此警告系统采取对策。
即使断开系统未被接通,这一安全措施也需要电源。纽扣电池通常用在此处,PCI法规则规定纽扣电池必须持续使用两年,并且必须有足够的电量来一次性应对篡改企图。
如果在外壳级别检测到篡改,则外壳内部的系统则必须采取防御措施,具体细节由设计师决定。但通常,防篡改信号必须尽可能地通过通用I/O提供给CPU。“这里有有几种架构,”芯科实验室(SiliconLabs)物联网产品高级应用经理BrentWilson指出,“对于一个CPU,可以检测到漏洞并通过软件进行响应。对于两个CPU,其中一个是安全的,我们有一个这一事件的输入引脚,而不安全的CPU可以向片上SE发送信号。”
一旦进入外壳,带有敏感内容的单个芯片必须规避篡改尝试。一些对策是物理上的,而其他对策则涉及有源传感器。即使提供篡改证据也可能会有所帮助。“篡改技术经常被用来保护包装、标签、密封、标记和物理安全。”Chen说,“从水印、热敏感或紫外线敏感的材料以及粉碎/玻璃材料中提取的所有东西都会在任何物理篡改尝试中留下可见的痕迹。”
尽管硬件信任根(HRoT)通常主要在启动时运行,以确保系统干净,但它们在完成该任务后即关闭。美信整合产品公司(MaximIntegrated)的嵌入式安全负责人ScottJones说:“完成所需的工作大约需要毫秒。”尽管启动防范攻击可能需要设计工作以及代码或电路,但是对于电池供电的设备而言,则不太可能有更多的
转载请注明地址:http://www.1xbbk.net/jwbzn/3361.html